

Anleitung zur Erstellung eines Koordinatenreferenzsystems am GNSS-Rover

Inhalt

1. Abschaltung der Mountpoints VRS_GK_BY und VRS_DHHN12_Bayern am 31.12.2024

Sechs Jahre nach Einführung des amtlichen Lagebezugssystems ETRS89/UTM32 in Bayern wird am 31.12.2024 der Mountpoint **VRS_GK_BY** für GNSS-Messungen im historischen Lagebezugssystem DHDN90/GK4 (Gauß-Krüger) abgeschaltet.

Ebenso wird zum selben Zeitpunkt der Mountpoint VRS_DHHN12_Bayern für GNSS-Messungen im historischen Höhenbezugssystem DHHN12 (NN-Höhen) deaktiviert.

Bei Verwendung dieser Mountpoints erhielten **SAPOS**-Nutzer bisher durch Aktivierung der Transformationsmessage automatisch Lagekoordinaten bzw. Höhen in den historischen Bezugssystemen. Diese Option steht ab 01.01.2025 nicht mehr zur Verfügung.

Für diejenigen **SAPOS**-Nutzer, die weiterhin GNSS-Echtzeitmessungen im Gauß-Krüger-System durchführen wollen, ist ab dem 01.01.2025 für einen dauerhaften Datumsübergang von ETRS89/UTM32 in das historische Lagebezugssystem DHDN90/GK der Import der Lagetransformationsdatei **NTv2 BY-SAPOS** auf dem GNSS-Instrument erforderlich.

Analog ist für **SAPOS**-Nutzer, die ab dem 01.01.2025 GNSS-Echtzeitmessungen im historischen Höhenbezugssystem DHHN12 (NN-Höhe) durchführen wollen, das Hinterlegen des vertikalen Transformationsmodells **NN Bayern (2007)** auf dem GNSS-Instrument erforderlich.

Beide Dateien stehen unter <u>https://sapos.bayern.de/download.php</u> im Bereich "Lage- und Höhenmodelle für GNSS-Rover" zum kostenlosen Download zur Verfügung.

2. Anleitung zur Erstellung einer GK-Abbildung am GNSS-Rover für Echtzeitmessungen im historischen Lagebezugssystem Gauß-Krüger

Um zukünftig GNSS-Echtzeitmessungen im historischen Lagebezugssystem DHDN90/GK durchführen zu können, müssen Sie auf Ihrem Rover ein eigenes Koordinatenreferenzsystem mit GK-Parametern anlegen. Dazu sind folgende Bestandteile erforderlich:

- Datumsübergang von ETRS89 nach DHDN90
- Lage- und optional Höhenmodell:
 - a) **NTv2 BY-SAPOS** für Lagetransformation von ETRS89 → DHDN90
 - b) NN Bayern (2007) für Höhentransformation von ellipsoid. Höhe → DHHN12 oder GCG2016 für Höhentransformation von ellipsoid. Höhe → DHHN2016
- Parameter der GK4-Abbildung

Folgende Schritte und Einstellungen sind von Ihnen vorzunehmen:

- 2.1 Download der Datei NTv2 BY-SAPOS sowie optional NN Bayern (2007) oder GCG20216 unter <u>https://sapos.bayern.de/download.php</u> und Import der Datei(en) in erforderlichen Ordner auf GNSS-Instrument. Bei Fragen zu gerätespezifischen Dateiformaten sowie zum Ablageort der Datei wenden Sie sich bitte an Ihren Gerätehersteller!
- 2.2 Einmalige Definition eines Koordinatenreferenzsystems am GNSS-Rover für die Gauß-Krüger Abbildung

Gauß-Krüger Abbildung (Zone 4)	
Тур	Transversal Mercator
Zentral Ost	4 500 000 m
Ursprung Nord	0
Urspr. Breite	0° N
Zentral Meridian	12°
Maßstab ZM	1,000000
Zonenbreite	3°

Für die Verebnung in zweidimensionale GK-Koordinaten muss auf dem GNSS-Rover das Koordinatensystem mit diesen Parametern angelegt werden.

Für Messungen im äußersten Westen Bayerns (Aschaffenburg) geben Sie aufgrund des großen Abstands zum Zentralmeridian eine Zonenbreite von 4° an, um auch in diesem Bereich GK4-Koordinaten zu erhalten.

Bessel-Ellipsoid		
Name	Bessel	
Achse a	6377397,155	
Achse b	6356078,963	
Erdabplattung f	1 : 299,152815	

Definition des Ellipsoids: für den Datums-Übergang von ETRS89 zu DHDN90 muss das Bessel-Ellipsoid (EPSG-Code 7004) ausgewählt oder mit den angegebenen Parametern definiert werden. Beim Großteil der GNSS-Gerätehersteller ist das Bessel-Ellipsoid bereits vordefiniert.

Koordinatenreferenzsystem für Gauß-Krüger Zone 4	
Name	Gauß Krüger Zone 4
Transformation	keine
Ellipsoid	Bessel
Projektion	GK4
Geoidmodell	NN Bayern (2007) oder GCG2016
LSKS ¹ Modell	NTv2 BY-SAPOS

Lagetransformationsmodell NTv2

Name

NTv2 BY-SAPOS

Wenn Sie GNSS-Messungen im historischen Lagebezugssystem DHDN90/GK durchführen wollen, wählen Sie an dieser Stelle das auf dem GNSS-Rover hinterlegte Lage-transformationsmodell **NTv2 BY-SAPOS** aus.

Höhentransformations- bzw.	
Geoidmodell	
	NN Powern (2007)

Name			ININ Da	yem (2007)	
Wenn	Sie	GNSS-Mes	ssunger	gleichzeitig	in
historia	ahan	Logobozugog			

historischen Lagebezugssystem DHDN90/GK und im historischen Höhenbezugssystem DHHN12 (NN-Höhe) durchführen wollen, wählen Sie an dieser Stelle das auf dem GNSS-Rover hinterlegte Geoidmodell **NN Bayern (2007)** aus. Wenn Sie GNSS-Messungen im historischen Lagebezugssystem DHDN90/GK und im amtlichen

Lagebezugssystem DHDN90/GK und im amtlichen Höhenbezugssystem DHHN2016 (NHN-Höhe) durchführen wollen, wählen Sie das auf dem GNSS-Rover hinterlegte Geoidmodell **GCG2016** aus.

¹ **LSKS**: Landesspezifisches Koordinatensystem

- 2.3 Das neu angelegte Koordinatenreferenzsystem "Gauß-Krüger Zone 4" muss anschließend auf dem GNSS-Instrument dem jeweiligen Projekt zugewiesen werden. Sollten Sie die von SAPOS ausgesendete RTCM3-Transformationsmessage für den automatischen Übergang von dreidimensionalen ETRS89-Koordinaten in verebnete UTM32-Koordinaten verwenden, so muss diese für das jeweilige GK-Projekt deaktiviert werden.
- 2.4 Überprüfen Sie anschließend an ausgewählten Testpunkten, ob die korrekten Lagekoordinaten und Höhen am GNSS-Rover angezeigt werden. Dazu haben Sie mehrere Möglichkeiten:
 - a) Messen Sie einen eigenen Testpunkt (z.B. Nagel im Asphalt) kontrolliert im Koordinatensystem ETRS89/UTM mit mehreren Einzelmessungen und Zeitversatz ein. Überprüfen Sie vor dem 31.12.2024 die Koordinate des Punktes einmal mit dem Mountpoint VRS_GK_BY und einmal mit Ihrem neu angelegten Koordinatenreferenzsystem. Da beim Mountpoint dieselben Parameter hinterlegt sind wie im Koordinatenreferenzsystem, müssen bei fehlerfreier Konfiguration am GNSS-Rover die gleichen GK-Koordinaten angezeigt werden.
 - b) Sollten Sie eine Testmessung erst nach Abschaltung des Mountpoints VRS_GK_BY durchführen, so können Sie GK-Koordinaten oder DHHN12-Höhen des selbst bestimmten Testpunktes mit dem Online-Transformationsdienst jederzeit kostenlos und ohne Registrierung unter <u>https://sapos.bayern.de/coord_tm.php</u> transformieren und anschließend mit den Werten Ihrer Testmessung vergleichen. Auf der Seite finden Sie eine Anleitung bzw. Beispiele für Transformationen mit dem Online-Dienst.
 - c) Sie können eine Testmessung auch auf einem der GNSS-Kontrollpunkte unter <u>https://sapos.bayern.de/checkpoint.php</u> durchführen, da diese Punkte sehr genau im amtlichen Raumbezug ETRS89 bestimmt wurden. Als Service haben wir eine Liste aller GNSS-Kontrollpunkte mit zusätzlichen GK-Lagekoordinaten sowie DHHN12-Höhen unter <u>https://sapos.bayern.de/download.php</u> im Bereich "Lageund Höhenmodelle für GNSS-Rover" zum kostenlosen Download zur Verfügung gestellt.

3. Anleitung zur Erstellung einer UTM-Abbildung am GNSS-Rover für Echtzeitmessungen im amtlichen Lagebezugssystem ETRS89/UTM und im historischen Höhenbezugssystems DHHN12

SAPOS-Nutzer, die GNSS-Echtzeitmessungen im amtlichen Lagebezugssystem ETRS89/UTM durchführen und lediglich Höhen im historischen Höhenbezugssystem DHHN12 benötigen, gehen wie folgt vor:

- 3.1 Download der Datei **NN Bayern (2007)** unter <u>https://sapos.bayern.de/download.php</u> und Import der Datei in erforderlichen Ordner auf GNSS-Instrument. Bei Fragen zu gerätespezifischen Dateiformaten sowie zum Ablageort der Datei wenden Sie sich bitte an Ihren Gerätehersteller!
- 3.2 Einmalige Definition eines Koordinatenreferenzsystems am GNSS-Rover für die Verwendung von UTM-Koordinaten in Verbindung mit historischen DHHN12-Höhen.

UTM-Abbildung (Zone 32)		
Тур	Transversal Mercator	
Zentral Ost	500 000 m	
Ursprung Nord	0	
Urspr. Breite	0° N	
Zentral Meridian	9° E	
Maßstab ZM	0,9996	
Zonenbreite	6°	

Für die Verebnung in zweidimensionale UTM32-Koordinaten muss auf dem GNSS-Rover das Koordinatensystem mit diesen Parametern angelegt werden.

Kunden im Osten Bayerns (Landkreise Passau und Freyung-Grafenau) wählen aufgrund des großen Abstands zum Zentralmeridian die Zonenbreite 8° anstatt 6° um innerhalb der UTM-Zone 32 noch Koordinaten angezeigt zu bekommen.

GRS80-Ellipsoid		
GRS80		
6378137,000		
6356752,314		
1 : 298,25722210		

Definition des Ellipsoids: für die Verebnung der dreidimensionalen ETRS89-Koordinaten (geographische Länge/Breite oder kartesisch XYZ) muss das globale GRS80-Ellipsoid (EPSG-Code 7019) ausgewählt oder mit den angegebenen Parametern definiert werden. Beim Großteil der GNSS-Gerätehersteller ist das GRS80-Ellipsoid bereits vordefiniert.

Koordinatenreferenzsystem für DHHN12-Höhen	
Name	DHHN12-Höhen
Transformation	keine
Ellipsoid	GRS80
Projektion	UTM32
Geoidmodell	NN Bayern (2007)
LSKS ¹ Modell	

Lagetransformationsmodell

Vame	

Hier wird KEIN Lagetransformationsmodell hinterlegt, da hier KEIN Datumsübergang von ETRS89 nach DHDN90 erfolgt.

Höhentransformations- bzw. Geoidmodell	

NN Bayern (2007)

Wenn Sie GNSS-Messungen gleichzeitig im amtlichen Lagebezugssystem ETRS89/UTM und im historischen Höhenbezugssystem DHHN12 (NN-Höhe) durchführen wollen, wählen Sie an dieser Stelle das auf dem GNSS-Rover hinterlegte Geoidmodell **NN Bayern (2007)** aus. Wenn Sie GNSS-Messungen im amtlichen Lagebezugssystem ETRS89/UTM32 und im amtlichen Höhenbezugssystem DHHN2016 (NHN-Höhe) durchführen wollen wählen Sie das auf dem

Höhe) durchführen wollen, wählen Sie das auf dem GNSS-Rover hinterlegte Geoidmodell **GCG2016** aus oder verwenden Sie alternativ die RTCM3-Transformationsmessage, die in allen Mountpoints ausgesendet wird.

- 3.3 Das neu angelegte Koordinatenreferenzsystem "DHHN12-Höhen" muss anschließend auf dem GNSS-Instrument dem jeweiligen Projekt zugewiesen werden. Sollten Sie die von SAPOS ausgesendete RTCM3-Transformationsmessage für amtliche Höhen im DHHN2016-Bezugssystem verwenden, so muss diese für das jeweilige DHHN12-Projekt deaktiviert werden.
- 3.4 Überprüfen Sie anschließend an ausgewählten Testpunkten, ob die korrekten Lagekoordinaten und Höhen am GNSS-Rover angezeigt werden. Beachten Sie hierzu die unterschiedlichen Möglichkeiten, die bereits unter Punkt 2.4 aufgeführt wurden.